Городская больница

Справочник заболеваний и лекарств

Результат ЭЭГ

Расшифровка ЭЭГ головного мозга

Важность нормального функционирования отделов головного мозга неоспорима – любое его отклонение непременно скажется на здоровье всего организма, независимо от возраста и пола человека. Поэтому при малейших сигналах о возникновении нарушений врачи сразу же рекомендуют пройти обследование. В настоящее время медицина успешно применяет довольно большое количество различных методик изучения деятельности и структуры мозга.

Но если необходимо выяснить качество биоэлектрической активности его нейронов, то наиболее подходящим для этого методом однозначно считается электроэнцефалограмма (ЭЭГ). Врач, осуществляющий процедуру должен обладать высокой квалификацией, так как, кроме проведения исследования, ему потребуется правильно прочитать полученные результаты. Грамотная расшифровка ЭЭГ – это гарантированный шаг к установлению верного диагноза и последующего назначения соответствующего лечения.

Подробно об энцефалограмме

Суть обследования заключается в фиксации электрической активности нейронов структурных образований головного мозга. Электроэнцефалограмма – это своеобразная запись нейронной деятельности на специальной ленте при использовании электродов. Последние закрепляются на участки головы и регистрируют активность определенного участка мозга.

Активность человеческого мозга напрямую определяется работой его срединных образований – переднего мозга и ретикулярной формации (связующего нейронного комплекса), обуславливающих динамику, ритмичность и построение ЭЭГ. Связующая функция формации определяет симметричность и относительную идентичность сигналов между всеми структурами мозга.


Строение головного мозга, на основании этих данных специалист расшифровывает диагностику

Процедура назначается при подозрениях на различные нарушения структуры и деятельности ЦНС (центральной нервной системы) – нейроинфекции, такие как менингит, энцефалит, полиомиелит. При данных патологиях изменяется активность мозговой деятельности, и это сразу же можно диагностировать на ЭЭГ, а в дополнение установить локализацию пораженного участка. ЭЭГ проводится на основании стандартного протокола, в котором фиксируются снятие показателей при бодрствовании или сне (у младенцев), а также с применением специализированных тестов.

К основным тестам относятся:

  • фотостимуляция – воздействие на закрытые глаза яркими вспышками света;
  • гипервентиляция – глубокое редкое дыхание на протяжении 3-5 минут;
  • открытие и закрытие глаз.

Эти тесты считаются стандартными и их применяют при энцефалограмме головного мозга и взрослым и детям любого возраста, и при различных патологиях. Существует еще несколько дополнительных тестов, назначающихся в отдельных случаях, таких как: сжатие пальцев в так называемый кулак, нахождение 40 минут в темноте, лишение сна на определенный период, мониторинг ночного сна, прохождение психологических тестов.

Данные тесты определяются неврологом и добавляются к основным, проводимым в ходе обследования, когда врачу необходимо оценить конкретные функции мозга.

Что можно оценить при ЭЭГ?

Данный вид обследования позволяет определить функционирование отделов головного мозга при разных состояниях организма – сне, бодрствовании, активной физической, умственной деятельности и других. ЭЭГ – это простой, абсолютно безвредный и безопасный метод, не нуждающийся в нарушении кожных покровов и слизистой оболочки органа.

В настоящее время он широко востребован в неврологической практике, поскольку дает возможность диагностировать эпилепсию, с высокой степенью выявлять воспалительные, дегенеративные и сосудистые нарушения в мозговых отделах. Также процедура обеспечивает определение конкретного месторасположения новообразований, кистозных разрастаний и структурных повреждений в результате травмы.

ЭЭГ с применением световых и звуковых раздражителей позволяет отличить истерические патологии от истинных, или выявить симуляцию последних. Процедура стала практически незаменимой для реанимационных палат, обеспечивая динамическое наблюдение коматозных пациентов.


Пропадание на ЭЭГ сигналов эклектической активности свидетельствует о наступлении летального исхода

Процесс изучения результатов

Анализ полученных результатов проводится параллельно во время процедуры, и в ходе фиксации показателей, и продолжается по ее окончании. При записи учитываются присутствие артефактов – механического движения электродов, электрокардиограммы, электромиограммы, наведение полей сетевого тока. Оценивается амплитуда и частота, выделяют наиболее характерные графические элементы, определяют их временное и пространственное распределение.

По окончании производится пато- и физиологическая интерпретация материалов, и на ее базе формулируется заключение ЭЭГ. По окончании заполняется основной медицинский формуляр по данной процедуре, имеющий название «клинико-электроэнцефалографическое заключение», составленный диагностом на проанализированных данных «сырой» записи.

Расшифровка заключения ЭЭГ формируется на базе свода правил и состоит из трех разделов:

  • Описание ведущих видов активности и графических элементов.
  • Вывод после описания с интерпретированными патофизиологическими материалами.
  • Корреляция показателей двух первых частей с клиническими материалами.

Основным описательным термином в ЭЭГ является «активность», он оценивает любую очередность волн (активность острых волн, альфа-активность и др.).

Виды активности человеческого мозга, фиксируемые при записи ЭЭГ

Основными видами активности, которые записываются в ходе процедуры и впоследствии подвергают интерпретации, а также дальнейшему изучению считаются волновые частота, амплитуда и фаза.

Частота

Показатель оценивается количеством волновых колебаний за секунду, фиксируется цифрами, и выражается в единице измерения – герцах (Гц). В описании указывается средняя частота изучаемой активности. Как правило, берется 4-5 участков записи длительностью1с, и рассчитывается число волн на каждом временном отрезке.

Амплитуда

Данный показатель – размах волновых колебаний эклектического потенциала. Измеряется расстоянием между пиками волн в противоположных фазах и выражается в микровольтах (мкВ). Для замера амплитуды применяется калибровочный сигнал. Если, к примеру, калибровочный сигнал при напряжении 50 мкВ определяется на записи высотой 10 мм, то 1 мм будет соответствовать 5 мкВ. В расшифровке результатов дается интерпретациям наиболее частым значениям, полностью исключая редко встречающиеся.

Фаза

Значение этого показателя оценивает текущее состояние процесса, и определяет его векторные изменения. На электроэнцефалограмме некоторые феномены оцениваются количеством содержащихся в них фаз. Колебания подразделяются на монофазные, двухфазные и полифазные (содержащие более двух фаз).

Ритмы мозговой деятельности

Понятием «ритм» на электроэнцефалограмме считается тип электрической активности, относящийся к определенному состоянию мозга, координируемый соответствующими механизмами. При расшифровке показателей ритма ЭЭГ головного мозга вносятся его частота, соответствующая состоянию участка мозга, амплитуда, и характерные его изменения при функциональных сменах активности.


Характеристики ритмов головного мозга зависят от того, в бодрствовании или в состоянии сна находится обследуемый

Ритмы бодрствующего человека

Мозговая деятельность, зафиксированная на ЭЭГ у взрослого человека, имеет несколько типов ритмов, характеризующихся определенными показателями и состояниями организма.

  • Альфа-ритм. Его частота придерживается интервала 8–14 Гц и присутствует у большинства здоровых индивидуумов – более 90 %. Самые высокие показатели амплитуды наблюдаются в состоянии покоя обследуемого, находящегося в темной комнате с закрытыми глазами. Лучше всего определяется в затылочной области. Фрагментарно блокируется или совсем затихает при мыслительной деятельности или зрительном внимании.
  • Бета-ритм. Его волновая частота колеблется в интервале 13–30 Гц, и основные перемены наблюдаются при активном состоянии обследуемого. Ярко выраженные колебания можно диагностировать в лобных долях при обязательном условии наличия активной деятельности, например, психическое или эмоциональное возбуждение и другие. Амплитуда бета-колебаний гораздо меньше альфа.
  • Гамма-ритм. Интервал колебаний от 30, может достигать 120–180 Гц и характеризуется довольно сниженной амплитудой – менее 10 мкВ. Превышение границы 15 мкВ считается патологией, обуславливающей снижение интеллектуальных способностей. Ритм определяется при решении задач и ситуаций, требующих повышенного внимания и концентрации.
  • Каппа-ритм. Характеризуется интервалом 8–12 Гц, и наблюдается в височной части мозга при умственных процессах путем подавления альфа-волн в остальных участках.
  • Лямбда-ритм. Отличается малым диапазоном – 4–5 Гц, запускается в затылочной области при необходимости принятия зрительных решений, например, занимаясь поиском чего-либо с открытыми глазами. Колебания полностью пропадают после концентрации взгляда в одной точке.
  • Мю-ритм. Определяется интервалом 8–13 Гц. Запускается в затылочной части, и лучше всего наблюдается при спокойном состоянии. Подавляется при запуске любой активности, не исключая и мыслительную.

Ритмы в состоянии сна

Отдельная категория видов ритмов, проявляющихся либо в условиях сна, либо при патологических состояниях включает в себя три разновидности данного показателя.

  • Дельта-ритм. Характерен для фазы глубокого сна и для коматозных больных. Также фиксируется при записи сигналов от областей коры мозга, расположенных на границе с пораженными онкологическими процессами участков. Иногда может быть зафиксирован у детей 4–6 лет.
  • Тета-ритм. Интервал частоты находится в пределах 4–8 Гц. Данные волны запускаются гиппокампом (информационным фильтром) и проявляются при сне. Отвечает за качественное усвоение информации и лежит в основе самообучения.
  • Сигма-ритм. Отличается частотой 10–16 Гц, и считается одним из главных и заметных колебаний спонтанной электроэнцефалограммы, возникающий при естественном сне на начальной его стадии.

По итогам, полученным при записи ЭЭГ, определяется показатель, характеризующий полную всеохватывающую оценку волн – биоэлектрическую активность мозга (БЭА). Диагност проверяет параметры ЭЭГ – частоту, ритмичность и присутствие резких вспышек, провоцирующих характерные проявления, и на этих основаниях делает окончательное заключение.

Расшифровка показателей электроэнцефалограммы

Чтобы расшифровать ЭЭГ, и не упустить никаких мельчайших проявлений на записи, специалисту необходимо учесть все важные моменты, которые могут отразиться на исследуемых показателях. К ним относятся возраст, наличие определенных заболеваний, возможные противопоказания и другие факторы.

По окончании сбора всех данных процедуры и их обработки, анализ идет к завершению и затем формируется итоговое заключение, которое и будет предоставлено для принятия дальнейшего решения по выбору метода терапии. Любое нарушение активностей может быть симптомом болезней, обусловленных определенными факторами.

Альфа-ритм

Норма для частоты определяется в диапазоне 8–13 Гц, и его амплитуда не выходит за отметку 100 мкВ. Такие характеристики свидетельствуют о здоровом состоянии человека и отсутствии каких-либо патологий. Нарушениями считается:

  • постоянная фиксация альфа-ритма в лобной доле;
  • превышение разницы между полушариями до 35%;
  • постоянное нарушение волновой синусоидальности;
  • присутствие частотного разброса;
  • амплитуда ниже 25 мкВ и свыше 95 мкв.

Наличие нарушений данного показателя свидетельствует о возможной асимметричности полушарий, что может быть результатом возникновения онкологических новообразований или патологий кровообращения мозга, например, инсульта или кровоизлияния. Высокая частота указывает на повреждения мозга или на ЧМТ (черепно-мозговую травму).


Инсульт или кровоизлияние – один из возможных диагнозов при функциональных изменениях альфа-ритма

Полное отсутствие альфа-ритма зачастую наблюдается при слабоумии, а у детей отклонения от нормы напрямую связаны с задержкой психического развития (ЗПР). О такой задержке у детей свидетельствует: неорганизованность альфа-волн, смещение фокуса с затылочной области, повышенная синхронность, короткая реакция активации, сверхреакция на интенсивное дыхание.

Данные проявления могут быть обусловлены тормозной психопатией, эпилептическими припадкам и, а короткая реакция считается одним из первичных признаков невротических расстройств.

Бета-ритм

В принятой норме эти волны ярко определяются в лобных долях мозга с симметричной амплитудой в интервале 3–5 мкВ, регистрирующейся в обоих полушариях. Высокая амплитуда наводит врачей на мысли о присутствии сотрясения мозга, а при появлении коротких веретен на возникновение энцефалита. Увеличение частоты и продолжительности веретен свидетельствует о развитии воспаления.

У детей, патологическими проявлениями бета-колебаний считается частота 15–16 Гц и присутствующая высокая амплитуда – 40–50 мкВ, и если ее локализация центральный или передний отдел мозга, то это должно насторожить врача. Такие характеристики говорят о высокой вероятности задержки развития малыша.

Дельта и тета-ритмы

Увеличение амплитуды данных показателей свыше 45 мкВ на постоянной основе характерно при функциональных расстройствах мозга. Если же показатели увеличены во всех мозговых отделах, то это может свидетельствовать о тяжелых нарушениях функций ЦНС.

При выявлении высокой амплитуды дельта-ритма выставляется подозрение на новообразование. Завышенные значения тета и дельта-ритма, регистрирующиеся в затылочной области свидетельствуют, о заторможенности ребенка и задержку в его развитии, а также о нарушении функции кровообращения.

Расшифровка значений в разных возрастных интервалах

Запись ЭЭГ недоношенного ребенка на 25–28 гестационной неделе выглядит кривой в виде медленных вспышек дельта и тета-ритмов, периодически сочетающихся с острыми волновыми пиками длиной 3–15 секунд при снижении амплитуды до 25 мкВ. У доношенных младенцев эти значения ярко разделяются на три вида показателей. При бодрствовании (с периодической частотой 5 Гц и амплитудой 55–60 Гц), активной фазой сна (при стабильной частоте 5–7 Гц и быстрой заниженной амплитудой) и спокойного сна со вспышками дельта колебаний при высокой амплитуде.

На протяжении 3-6 месяцев жизни ребенка количество тета-колебаний постоянно растет, а для дельта-ритма, наоборот, характерен спад. Далее, с 7 месяцев до года у ребенка идет формирование альфа-волн, а дельта и тета постепенно угасают. На протяжении следующих 8 лет на ЭЭГ наблюдается постепенная замена медленных волн на быстрые – альфа и бета-колебания.


Показатели ритма претерпевают регулярные изменения в зависимости от возраста

До 15 лет в основном преобладают альфа-волны, и к 18 годам преобразование БЭА завершается. На протяжении периода от 21 до 50 лет устойчивые показатели почти не изменяются. А с 50 начинается следующая фаза перестройки ритмичности, что характеризуется снижением амплитуды альфа-колебаний и возрастанием бета и дельта.

После 60 лет частота также начинает постепенно угасать, и у здорового человека на ЭЭГ замечаются проявления дельта и тета-колебаний. По статистическим данным, возрастные показатели от 1 до 21 года, считающиеся «здоровыми» определяются у обследуемых 1–15 лет, достигая 70%, и в интервале 16–21 – около 80%.

Наиболее частые диагностируемые патологии

Благодаря электроэнцефалограмме довольно легко диагностируются заболевания, такие как эпилепсия, или различные виды черепно-мозговых травм (ЧМТ).

Эпилепсия

Исследование позволяет определить локализацию патологического участка, а также конкретный вид эпилептической болезни. В момент судорожного синдрома запись ЭЭГ имеет ряд определенных проявлений:

  • заостренные волны (пики) – внезапно нарастающие и спадающие могут проявляться и в одном и в нескольких участках;
  • совокупность медленных заостренных волн при приступе становится еще более выраженной;
  • внезапное повышение амплитуды в виде вспышек.

Применение стимулирующих искусственных сигналов помогает при определении формы эпилептической болезни, так как они обеспечивают видимость скрытой активности, сложно поддающейся диагностированию при ЭЭГ. Например, интенсивное дыхание, требующее гипервентиляцию, приводит к уменьшению просвета сосудов.

Также используется фотостимуляция, проводимая при помощи стробоскопа (мощного светового источника), и если реакции на раздражитель нет, то, скорее всего, присутствует патология, связанная с проводимостью зрительных импульсов. Появление нестандартных колебаний указывает на патологические изменения в мозге. Врачу не следует забывать, воздействие мощным светом может привести к эпилептическому припадку.

ЧМТ

При необходимости установить диагноз ЧМТ или сотрясения со всеми присущими патологическими особенностями, зачастую применяют ЭЭГ, особенно в случаях, когда требуется установить место локализации травмы. Если ЧМТ легкая, то запись зафиксирует несущественные отклонения от нормы – несимметричность и неустойчивость ритмов.

Если же поражение окажется серьезным, то и соответственно отклонения на ЭЭГ будут ярко выражены. Нетипичные изменения в записи, ухудшающиеся на протяжении первых 7 дней, свидетельствуют о масштабном поражении мозга. Эпидуральные гематомы чаще всего не сопровождаются особой клиникой, их можно определить лишь по замедлению альфа-колебаний.

А вот субдуральные кровоизлияния выглядят совсем иначе – при них формируются специфические дельта-волны со вспышками медленных колебаний, и при этом расстраиваются альфа. Даже после исчезновения клинических проявлений на записи могут еще какое-то время наблюдаться общемозговые патологические изменения, за счет ЧМТ.

Восстановление функции мозга напрямую зависит от типа и степени поражения, а также от его локализации. В зонах, подвергающимся нарушениям или травмам, может возникнуть патологическая активность, что опасно развитием эпилепсии, поэтому во избежание осложнений травм, следует регулярно проходить ЭЭГ и наблюдать за состоянием показателей.


Регулярное обследование мозга после ЧМТ позволит вовремя обнаружить осложнения Энцефалограмма – простой способ держать под контролем многие мозговые нарушения.

Несмотря на то что ЭЭГ довольно несложный и не требующий вмешательства в организм пациента метод исследования, он отличается довольно высокой диагностической способностью. Выявление даже мельчайших нарушений в деятельности головного мозга обеспечивает быстрое принятие решения по выбору терапии и дает больному шанс на продуктивную и здоровую жизнь!

Расшифровка показателей ЭЭГ головного мозга

ЭЭГ (электроэнцефалография) головного мозга – высокоинформативный метод диагностики состояния центральной нервной системы, основанный на регистрации биоэлектрических потенциалов коры головного мозга в процессе его жизнедеятельности. Результаты исследования записываются на бумажную ленту или выводятся на монитор компьютера. Расшифровку результатов ЭЭГ головного мозга у взрослых нейрофизиологи Юсуповской больницы проводят с помощью компьютерной программы.

Заключение пациент получает на второй день. Если результаты расшифровки ЭЭГ трактуются неоднозначно, их обсуждают на заседании экспертного совета с участием профессоров и врачей высшей категории. Ведущие неврологи-нейрофизиологи коллегиально принимают решение в отношении диагноза и дальнейшей тактики ведения пациентов. Результаты ЭЭГ головного мозга, выполненной в Юсуповской больнице всегда точные, поскольку исследование проводится с помощью новейшей европейской и американской аппаратуры, а расшифровку делают кандидаты медицинских наук, которые прошли подготовку в лучших отечественных и зарубежных диагностических центрах.

Норма ЭЭГ у взрослых

Расшифровка результатов ЭЭГ состоит из трёх разделов:

  • описание ведущих видов активности и графических элементов;
  • заключение после описания с интерпретированными патофизиологическими материалами;
  • корреляция показателей двух первых частей с клинической картиной заболевания.

Основным описательным термином в ЭЭГ является «активность». Он оценивает любую очерёдность волн. Основными видами активности, которые записываются в ходе исследования и впоследствии подвергают расшифровке, а также дальнейшему изучению, являются частота, амплитуда и фаза волн. Частота оценивается количеством волновых колебаний за секунду. Она выражается в единицах измерения – герцах (Гц). В описании нейрофизиолог указывает среднюю частоту изучаемой активности.

Амплитуда – это размах волновых колебаний электрического потенциала. Измеряется расстоянием между пиками волн в противоположных фазах, выражается в микровольтах (мкВ). Для замера амплитуды применяют калибровочный сигнал. В расшифровке результатов нейрофизиологи дают интерпретацию наиболее частым значениям, полностью исключая редко встречающиеся.

Фаза оценивает текущее состояние процесса, определяет его векторные изменения. На электроэнцефалограмме врачи функциональной диагностики оценивают некоторые феномены оценивают содержащихся в них фаз. Колебания бывают монофазными, двухфазными и полифазными.

Электрические ритмы головного мозга

Понятием «ритм» на ЭЭГ считается тип электрической активности, который относится к определённому состоянию мозга и координируется соответствующими механизмами. При расшифровке показателей ритма ЭЭГ головного мозга нейрофизиологи учитывают его частота, соответствующую состоянию участка мозга, амплитуду и характерные изменения при функциональных сменах активности.

Характеристики ритмов головного мозга зависят от того, спит пациент или находится в состоянии бодрствования. Мозговая деятельность, зафиксированная на ЭЭГ у взрослого человека, имеет несколько типов ритмов, которые характеризуются определёнными показателями и состоянием организма.

На ЭЭГ альфа-ритм характеризуется частотой от 8 до 14 Гц. Он присутствует у большинства здоровых индивидуумов. Самые высокие показатели амплитуды наблюдаются в состоянии покоя обследуемого, который находится в тёмной комнате с закрытыми глазами. Лучше всего альфа-ритм определяется в затылочной области. Он может фрагментарно блокироваться или совсем затихать при зрительном внимании или мыслительной деятельности.

Волновая частота бета-ритма на ЭЭГ колеблется в интервале 13–30 Гц. Его основные изменения наблюдаются при активном состоянии обследуемого. Ярко выраженные колебания выявляют в лобных долях при обязательном условии наличия активной деятельности (психического или эмоционального возбуждения).

Гамма-ритм имеет интервал колебаний от 30 до180 Гц. Он характеризуется довольно сниженной амплитудой – менее 10 мкВ. Превышение границы амплитуды 15 мкВ считается патологией, которая обуславливает снижение интеллектуальных способностей. Ритм определяется при решении ситуаций и задач, которые требуют повышенной концентрации и внимания.

Каппа-ритм характеризуется интервалом 8–12 Гц. Он наблюдается в височной части мозга при умственной деятельности путём подавления в остальных участках альфа-волн. Лямбда-ритм отличается диапазоном 4–5 Гц. Он запускается в затылочной области при необходимости принятия зрительных решений (занимаясь поиском предмета с открытыми глазами). Колебания полностью пропадают после концентрации взгляда в одной точке. Мю-ритм имеет интервал 8–13 Гц. Запускается в затылочной части головного мозга, лучше всего наблюдается при спокойном состоянии. Подавляется при запуске любой активности.

Отдельная категория видов ритмов, проявляющихся в условиях сна или при патологических состояниях, включает в себя 3 разновидности данного показателя:

  • дельта-ритм определяется у коматозных больных и в фазе глубокого сна, фиксируется при записи сигналов от областей коры мозга, расположенных на границе с поражёнными злокачественными новообразованиями участков;
  • тета-ритм обладает интервалом частоты в пределах 4–8 Гц, проявляется при сне, отвечает за качественное усвоение информации, лежит в основе самообучения;
  • сигма-ритм отличается частотой 10–16 Гц, считается одним из заметных и главных колебаний спонтанной электроэнцефалограммы, возникает при естественном сне на начальной его стадии.

По итогам, полученным при записи ЭЭГ, определяется показатель, который характеризует полную всеохватывающую оценку волн – биоэлектрическую активность мозга. Врач функциональной диагностики проверяет параметры ЭЭГ – частоту, ритмичность и присутствие резких вспышек, которые провоцируют характерные проявления. На этих основаниях нейрофизиолог делает окончательное заключение.

Расшифровка показателей ЭЭГ у взрослого

Для того чтобы расшифровать ЭЭГ и предоставить точные результаты, не упустить никаких мельчайших проявлений на записи, нейрофизиологи учитывают все важные моменты, которые могут отразиться на исследуемых показателях, таких как:

  • возраст пациента;
  • наличие определённых заболеваний;
  • возможные противопоказания.

По окончании сбора всех данных ЭЭГ и их обработки врач функциональной диагностики проводит анализ и формирует итоговое заключение, которое предоставляет для принятия дальнейшего решения по выбору метода терапии. Любое нарушение активностей может быть признаком заболеваний, обусловленных определёнными факторами.

Нарушениями ЭЭГ считается:

  • постоянная фиксация альфа-ритма в лобной доле;
  • постоянное нарушение волновой синусоидальности;
  • присутствие частотного разброса;
  • превышение разницы между полушариями до 35%;
  • амплитуда ниже 25 мкВ и свыше 95 мкВ.

Наличие нарушений данного показателя свидетельствует о возможной асимметричности полушарий. Это может быть результатом возникновения злокачественных новообразований или нарушений кровообращения мозга (ишемического или геморрагического инсульта). Высокая частота указывает на черепно-мозговую травму или повреждения мозга.

При выявлении высокой амплитуды дельта-ритма нейрофизиолог может предположить наличие объёмного образования головного мозга. Завышенные значения тета и дельта-ритма, которые регистрируются в затылочной области, свидетельствуют о нарушении функции кровообращения, заторможенности задержку в развитии ребёнка.

Расшифровка ЭЭГ головного мозга у детей

ЭЭГ у детей имеет особенности. Запись ЭЭГ недоношенного ребёнка, родившегося на 25–28 неделе гестации, выглядит кривой в виде медленных вспышек дельта и тета-ритмов, которые периодически сочетаются с острыми волновыми пиками длиной 3–15 секунд при снижении амплитуды до 25 мкВ. У доношенных новорожденных детей эти значения разделяются на 3 вида показателей:

  • при бодрствовании (с периодической частотой 5 Гц и амплитудой 55–60 Гц);
  • в активной фазе сна (при стабильной частоте 5–7 Гц и быстрой заниженной амплитудой);
  • во время спокойного сна со вспышками дельта колебаний при высокой амплитуде.

На протяжении 3-6 месяцев жизни малыша количество тета-колебаний постоянно растёт. Для дельта-ритма характерен спад. С 7 месяцев до одного года у ребёнка формируются альфа-волны, а дельта и тета постепенно угасают. На протяжении следующих 8 лет на ЭЭГ медленные волны постоянно заменяются быстрыми альфа и бета-колебаниями. До 15 лет в основном преобладают альфа-волны. К 18 годам формирование биологической активности мозга завершается.

Для того чтобы пройти обследование и расшифровку результатов ЭЭГ, звоните по телефону Юсуповской больницы. Контакт центр работает каждый день круглосуточно. Нейрофизиологи анализируют ЭЭГ в динамике, сравнивают результаты исследования с нормой ЭЭГ.

АвторРуководитель НПЦ болезни двигательного нейрона/БАС, кандидат медицинских наук, врач высшей категории

Список литературы

  • МКБ-10 (Международная классификация болезней)
  • Юсуповская больница
  • «Диагностика». — Краткая Медицинская Энциклопедия. — М.: Советская Энциклопедия, 1989.
  • «Клиническая оценка результатов лабораторных исследований»//Г. И. Назаренко, А. А. Кишкун. г. Москва, 2005 г.
  • Клиническая лабораторная аналитика. Основы клинического лабораторного анализа В.В Меньшиков, 2002 .

Наши специалисты

Врач-терапевт, гастроэнтеролог, кандидат медицинских наук. Заместитель генерального директора по медицинской части.Анестезиолог-реаниматолог, кардиолог, врач функциональной диагностики Врач-эндоскопист

Цены на услуги *

Наименование услуги Стоимость
Консультация врача-терапевта, первичная 3600 руб.
Консультация врача-терапевта, повторная 2900 руб.
Консультация врача-терапевта, к.м.н., первичная 5150 руб.
Консультация врача-терапевта, к.м.н., повторная 3600 руб.
Консультация врача-терапевта, д.м.н./профессора 8250 руб.
Забор крови 590 руб.
Дуплексное сканирование магистральных артерий и вен 6300 руб.
УЗИ-контроль при инвазивных вмешательствах 4895 руб.
Определение уровня свободной жидкости в брюшной или плевральной полости 1650 руб.
УЗ диагностика сосудов головного мозга 5665 руб.
УЗИ 1 зоны, без дополнительных исследований (определение уровня свободной жидкости, остаточной мочи и др.) 3630 руб.
Ультразвуковая доплерография артерий или вен 1 конечности 3150 руб.
Ультразвуковая диагностика при беременности 3800 руб.
Ультразвуковое исследование (ТВУЗИ / ТРУЗИ) 3000 руб.
Эзофагогастродуоденоскопия диагностическая 9900 руб.
Эндоскопическое лигирование варикозно-расширенных вен пищевода (без анестезии) 46350 руб.
Эндоскопическая остановка или профилактика желудочно-кишечного кровотечения 28000 руб.
Анестезия в/в при проведении эндоскопического исследования 3000 руб.
pH-метрия 1090 руб.
Эндоскопическая резекция слизистой 18000 руб.
Бронхоскопия диагностическая 14000 руб.
Эндопротезирование трахеи 167800 руб.
Бронхоскопия санационная 6000 руб.
Бронхоальвеолярный лаваж 4400 руб.
Удаление инородного тела трахеи, бронха или легкого 8965 руб.
Эндоскопическая ассистенция в условиях РГ-контроля 38600 руб.
Толстокишечная диагностическая эндоскопия 15000 руб.
Эндоскопическое стентирование пищевода, желудка, двенадцатиперстной кишки, толстой кишки 148000 руб.
Полипэктомия эндоскопическая 9000 руб.
Ретроградная цистография 7500 руб.
Сцинтиграфия костей скелета 8000 руб.
Рентгенография одной области (без контраста) 5800 руб.
Рентгенография одной области (с контрастом) 13860 руб.
Рентгенологический контроль при инвазивных операциях (без контраста) 5280 руб.
Рентгенологический контроль при инвазивных операциях (с контрастом) 9900 руб.
Аортография грудного отдела 19000 руб.
Аортография дуги и брахиоцефальных артерий 19000 руб.
Брюшная аортография 19000 руб.
Гистеросальпингография 10000 руб.
Видеомониторинг электроэнцефалограммы (24 часа) 30900 руб.
Видеомониторинг электроэнцефалограммы (до 4 часов) 10300 руб.
Электроэнцефалография (ЭЭГ) 5665 руб.
Регистрация соматосенсорных вызванных потенциалов коры головного мозга 4565 руб.
Регистрация вызванных потенциалов коры головного мозга зрительные 5665 руб.
Регистрация вызванных потенциалов коры головного мозга когнитивные 5665 руб.
Регистрация вызванных потенциалов коры головного мозга слуховые 5665 руб.
Электромиография игольчатами электродами (одна мышца) 5775 руб.
Электронейромиография стимуляционная одного нерва сенсорные волокна 1155 руб.
Электронейромиография стимуляционная одного нерва двигательные волокна 1500 руб.
Электронейромиография стимуляционная одного нерва F-ответ 1705 руб.
Электронейромиография стимуляционная одного нерва H-ответ 1705 руб.
Электронейромиография игольчатая 5665 руб.
МСКТ головного мозга с внутривенным болюсным контрастированием 15250 руб.
МСКТ исследование костей лицевого черепа 10650 руб.
МСКТ органов брюшной полости и забрюшинного пространства с внутривенным болюсным контрастированием 18000 руб.
МСКТ коронарных артерий с контрастированием 23350 руб.
МСКТ органов грудной клетки, брюшной полости и забрюшинного пространства с контрастированием 18250 руб.
МСКТ органов грудной клетки, малого таза, брюшной полости и забрюшинного пространства с контрастированием 24900 руб.
МСКТ органов грудной клетки с внутривенным болюсным контрастированием 13250 руб.
МСКТ органов малого таза с внутривенным болюсным контрастированием 13650 руб.
МСКТ мочевыделительной системы с внутривенным болюсным контрастированием 13250 руб.
КТ ангиография ОБП с 3D реконструкцией 23180 руб.
МСКТ почек и надпочечников с внутривенным болюсным контрастированием 12890 руб.
МСКТ мягких тканей с внутривенным болюсным контрастированием 13630 руб.
МСКТ исследование одного отдела позвоночника 8350 руб.
МСКТ исследование костей лицевого черепа 9990 руб.
МСКТ костей таза 7500 руб.
МСКТ одного сустава 6680 руб.
МСКТ стопы 7500 руб.
МСКТ кисти 7500 руб.
МСКТ височно-нижнечелюстных суставов 6680 руб.
МСКТ головного мозга 7420 руб.
МСКТ почек и надпочечников 5980 руб.
Комплексное МСКТ исследование сердца с оценкой функции и сосудов сердца (КАГ) 49450 руб.
МСКТ ангиография брюшного отдела аорты 14420 руб.
МСКТ ангиография сосудов нижних конечностей 16690 руб.
Оценка объемных образований грудной клетки, брюшной полости, забрюшинного пространства, малого таза (без учета стоимости контрастного препарата) 11650 руб.
КТ-топометрия головного мозга 23500 руб.
МСКТ 1 зона (амбулаторный прием) АКЦИЯ 4990 руб.
Цифровая маммография 3300 руб.
МСКТ органов брюшной полости и забрюшинного пространства 10200 руб.
МСКТ органов грудной клетки 10200 руб.
МСКТ органов малого таза 10200 руб.
МСКТ органов грудной клетки с виртуальной бронхоскопией 13450 руб.
МСКТ мягких тканей одной анатомической области 7230 руб.
МСКТ сегмента конечности без описания суставов (плечо, предплечье, бедро, голень) 8900 руб.
МСКТ виртуальная колоноскопия 13350 руб.
Магнитно-резонансная томография всего тела (расширенная) 73080 руб.
Выдача заключения по КТ-исследованию другой медицинской организации 3380 руб.
Дозиметрическое планирование 50000 руб.
Сеанс конформной лучевой терапии 12650 руб.
Сравнение снимков МСКТ в динамике 4500 руб.
Предоставление данных исследования на пленке или диске (дубликат) 1240 руб.
Услуга второе мнение. Консультация эксперта д.м.н., профессора 8240 руб.
Обеспечение болюсного контрастирования, динамического контрастирования, контрастной перфузии или ангиографии одной зоны во время проведения КТ или КТ ангиографии 9270 руб.
Ангиография почечных артерий 14420 руб.
Дополнительное введение контрастного вещества (Омнискан/Ультравист) 7180 руб.
Магнитно-резонансная томография головного мозга с бесконтрастной ангиографией артерий и вен головного мозга 16690 руб.
Магнитно-резонансная томография тазобедренных суставов 12030 руб.
Магнитно-резонансная томография брюшной полости, забрюшинного пространства 16320 руб.
Магнитно-резонансная томография височно-нижнечелюстных суставов 11130 руб.
Магнитно-резонансная томография трех отделов позвоночника 18990 руб.
Магнитно-резонансная томография голеностопного сустава 10090 руб.
Магнитно-резонансная томография головного мозга 8900 руб.
Магнитно-резонансная томография головного мозга и гипофиза 19200 руб.
Услуга второе мнение. Консультация эксперта, д.м.н., профессора 7420 руб.
Магнитно-резонансная томография головного мозга с контрастированием 13190 руб.
Магнитно-резонансная томография грудного отдела позвоночника 8900 руб.
Магнитно-резонансная томография кисти 10090 руб.
Магнитно-резонансная томография коленного сустава 8900 руб.
Магнитно-резонансная томография крестцово-подвздошных сочленений 9180 руб.
Магнитно-резонансная томография локтевого сустава 9500 руб.
Магнитно-резонансная томография орбит 9180 руб.
Магнитно-резонансная томография органов малого таза (мужской, женский) 11130 руб.
Магнитно-резонансная томография плечевого сустава 10090 руб.
Магнитно-резонансная томография почек и МР-урография 11680 руб.
Магнитно-резонансная томография пояснично-крестцового отдела позвоночника 9180 руб.
Магнитно-резонансная томография плечевых сплетений 9500 руб.
Магнитно-резонансная томография слюнных желез 9180 руб.
Магнитно-резонансная томография суставов стопы 10090 руб.
Магнитно-резонансная томография тазобедренных суставов 11680 руб.
Магнитно-резонансная бесконтрастная венография интракраниальных вен и синусов 10850 руб.
Магнитно-резонансная томография шейного отдела позвоночника 9180 руб.
Магнитно-резонансная томография мягких тканей (одна зона) 9180 руб.
Магнитно-резонансная томография мягких тканей с контрастированием 11960 руб.
Магнитно-резонансная томография брюшной полости с внутривенным контрастированием 15580 руб.
Магнитно-резонансная томография органов малого таза с внутривенным контрастированием 14650 руб.
Магнитно-резонансная томография всего тела (Онкологический скрининг) 30130 руб.
Обеспечение контрастирования одной зоны во время проведения МРТ (контрастное вещество ПРИМОВИСТ 10 мл) 14840 руб.
Комплексная программа МРТ: исследование головного мозга и сосудов у пациентов с деменцией 31420 руб.
Магнитно-резонансная бесконтрастная перфузия головного мозга 10820 руб.
Перфузия головного мозга с контрастированием 10820 руб.
Магнитно-резонансная томография сердца с контрастированием 20090 руб.
Магнитно-резонансная томография лучезапястного сустава 9790 руб.
Магнитно-резонансная томография сустава (ПР) 12360 руб.
МР бесконтрастная ангиография сосудов шеи 7040 руб.
Выдача заключения по МРТ-исследованию другой медицинской организации 3380 руб.
МР-ангиография головного мозга с внутривенным контрастированием 17080 руб.
МР бесконтрасная ангиография артерий головного мозга 4330 руб.
МР бесконтрастная ангиография артерий и вен головного мозга 6800 руб.
Магнитно-резонансная томография спинного мозга с трактографией (1 зона) 12000 руб.
Магнитно-резонансная томография крестцово-копчикового отдела позвоночника 8500 руб.
Магнитно-резонансная томография почек и надпочечников 12700 руб.
Магнитно-резонансная томография головного мозга по программе Эпилепсия 15000 руб.
Магнитно-резонансная холангиография 8900 руб.
ПЭТ-КТ 71070 руб.
Исследование функции внешнего дыхания 3400 руб.
Побудительная спирометрия 1500 руб.
Функция внешнего дыхания и газы крови 4500 руб.
Мониторинговая пульсоксиметрия 7200 руб.
Суточное мониторирование АД до 24 часов при непрерывной записи 4070 руб.
Суточное мониторирование ЭКГ до 24 часов при непрерывной записи 4345 руб.
Эхокардиография (ЭхоКГ) 6820 руб.
Комплексная диагностика состояния функции равновесия на стабилометрической платформе 4565 руб.
Запись и расшифровка ЭКГ с использованием 12-ти канального электрокардиографа 1905 руб.
Исследование функции внешнего дыхания с бронхолитиком 5665 руб.
Тредмил-тест 9075 руб.
Комплексное обследование «Женское здоровье» 16610 руб.
Check-up «Здоровые суставы» 14190 руб.
Комплексная программа «Кардиологический Check up» 39590 руб.
Комплексная программа «Лечение боли в суставах» 17930 руб.
Комплексное обследование «Мужское здоровье» 11165 руб.

ЭЭГ головного мозга расшифровка показателей

Электроэнцефалография – это способ диагностирования отделов головы, нервной системы человека. Метод основан на взаимодействии электродов и биоэлектрических импульсов коры головного мозга. Электроды фиксируют частоты, у которых свои показатели, измеряются они в Гц, записываются под греческим алфавитом, например, альфа или бета-ритм. Нервные импульсы, которые задают ритм работы в нашей голове, меняют его, если есть какие-то патологии или сбои в системе. Именно эти модификации должен зафиксировать прибор. Так же с помощью энцефалограммы головного мозга определяют точное место повреждения.

Ритмы ЭЭГ

На электроэнцефалограмме можно выделить четыре основных ритма ЭЭГ головного мозга – альфа, бета, дельта и тета.

  1. Альфа-ритм (или альфа-волны) – основной компонент энцефалограммы здорового взрослого человека (регистрируется у 85-90% людей). Такие волны в норме имеют частоту от 8 до 13 герц (колебаний в секунду) и являются преобладающими в состоянии бодрствования (когда пациент спокойно лежит с закрытыми глазами). Максимальная альфа-активность определяется в затылочной и теменной области.
  2. Бета-ритм также, как и альфа-волны относится к нормальным проявлениям функциональной деятельности человека. При этом частота колебаний составляет 14-35 в секунду, и регистрируют их преимущественно над лобными долями головного мозга. Бета ритм ЭЭГ появляется при раздражении органов чувств (прикосновении, световой, звуковой стимуляции), движениях, умственной активности.
  3. Дельта-ритм (частота 0,5-3 Гц) при расшифровке ЭЭГ обнаруживается в норме у ребенка первого года жизни, частично сохраняясь иногда до семилетнего возраста. В дальнейшем дельта-волны фиксируются в основном во время сна.
  4. Тета-ритм энцефалограммы (частота от 4 до 7 колебаний в секунду) в норме встречается у детей от 1 до 6 лет, постепенно замещаясь по мере взросления на альфа-ритм. Отмечается тета-активность и во время сна, в том числе у взрослых.

Что показывает ЭЭГ у детей и взрослых

У новорожденных и детей раннего возраста при расшифровке ЭЭГ преобладают медленные волны на электроэнцефалограмме (дельта и тета-ритм). Однако уже к году жизни альфа-ритм делается все более активным и к 8-9 годам становится преобладающим. Полностью ЭЭГ картина, характерная для взрослого человека, формируется к 16-18 годам и сохраняется в относительно стабильном виде примерно до 50 лет. По мере старения организма доминирование альфа-ритма становится не столь выраженным и к 60-70 годам в норме (как в детском возрасте) регистрируются и медленные дельта и тета-волны на ЭЭГ.

Расшифровка показателей энцефалограммы

Теперь о том, как проводится расшифровка ЭЭГ головного мозга. Анализирует энцефалограмму и выдает заключение врач-невролог (нейрофизиолог), учитывая возраст пациента, его жалобы, клиническую картину имеющихся нарушений и другие факторы.

  1. Выявляется основной, преобладающий ритм энцефалограммы (у большинства здоровых взрослых людей и подростков – это альфа-ритм).
  2. Изучается симметричность электрических потенциалов нервных клеток, регистрируемых с левого и правого полушарий головного мозга.
  3. Анализируются имеющиеся на ЭЭГ патологические ритмы, например, дельта и тета-ритм у взрослых в состоянии бодрствования.
  4. Проверяется регулярность биоэлектрической активности, амплитуда ритмов
  5. Выявляется пароксизмальная активность на электроэнцефалограмме, наличие острых волн, пиков, спайк-волн
  6. При отсутствии патологических изменений на фоновой энцефалограмме проводятся функциональные тесты (фотостимуляция, гипервентиляция и др.), повторная регистрация электрических потенциалов головного мозга и расшифровка ЭЭГ.

Что показывает электроэнцефалограмма при эпилепсии

  • Регистрация ЭЭГ во время эпилептического приступа позволяет зафиксировать высокоамплитудную пароксизмальную активность в виде пик-волн и острых волн
  • Вне приступа судорожная готовность мозга может не проявляться, поэтому для провокации эпилептической активности используются различные пробы. Часто свидетельством пароксизмальной активности является наличие высоковольтных тета и дельта-волн
  • Для длительной регистрации энцефалограммы головного мозга можно использовать ЭЭГ мониторинг или видео-ЭЭГ-мониторинг (регистрация электроэнцефалограммы и видеосъемка поведения пациента в течение 3-8 часов, иногда на протяжении суток) с последующей расшифровкой.

Расшифровка ЭЭГ при других неврологических расстройствах

  • Наиболее частым признаком органических заболеваний головного мозга – опухолей, черепно-мозговых травм, сосудистых нарушений, является наличие межполушарной ассиметрии, замедление частоты ритма электроэнцефалограммы, а также появление признаков пароксизмальной активности в отдельных участках мозга
  • Для диагностики нарушений сна и связанных с этим проблем (храп, бессонница, синдром обструктивного апноэ сна) зачастую необходимо проведение полисомнографии (изучается ЭЭГ, ЭКГ, нервно-мышечная проводимость, насыщение крови кислородом, тяжесть храпа, дыхание, движения ног, рук, глаз…)
  • Достаточно широко используется анализ энцефалограммы в динамике при последствиях родовых травм у ребенка, при задержке психического, моторного и речевого развития у детей. При этом расшифровка основывается на изучении различных косвенных признаков (замедление формирования альфа-ритма с низкой амплитудой и дезорганизацией, преобладание медленных волн в состоянии бодрствования в возрасте 5-7 лет и старше, смещение фокуса активности в передние отделы головного мозга и др.).

К какому врачу обращаться на консультацию с заключением ЭЭГ?

Расшифровка ЭЭГ помогает в диагностике многих заболеваний, однако для постановки правильного диагноза важнее всего внимательный осмотр пациента врачом-неврологом (эпилептологом), анализ имеющихся жалоб, клиники, данных МРТ, КТ и других исследований. Заключение ЭЭГ имеет смысл только с учетом вышеперечисленных обследований и индивидуальных особенностей (имеющихся проблем) данного конкретного человека.

При этом запись на консультацию врача эпилептолога с результатами ЭЭГ будет наилучшим выбором, ведь этот специалист лучше разбирается в расшифровке энцефалограммы и сможет разграничить изменения. встречающиеся при эпилепсии от других схожих расстройств (ВСД, простые обмороки, болезни сердца и т.п.).

Если необходимо назначение противосудорожных препаратов и коррекция их приема в динамике, врач-эпилептолог также сможет подобрать наилучшую комбинацию эффективных лекарственных средств для данного конкретного пациента с учетом возраста, общего состояния здоровья и наличия сопутствующих заболеваний. Если такого специалиста в вашем городе нет, обращайтесь на консультацию детского или взрослого невролога.

Что такое ЭЭГ и зачем она нужна

Ученые любят искать первое упоминание своей науки. К примеру, я видел статью, где всерьез утверждалось, что первые опыты по электрической стимуляции мозга были проведены в Древнем Риме, когда кого-то ударил током электрический угорь. Так или иначе, обычно, историю электрофизиологии принято отсчитывать примерно от опытов Луиджи Гальвани (XVIII век). В этом цикле статей мы попробуем рассказать небольшую часть того, что наука узнала за последние 300 лет про электрическую активность мозга человека, про то, какие профиты из всего этого можно извлечь.

Откуда берется электрическая активность мозга

Мозг состоит из нейронов и глии. Нейроны проявляют электрическую активность, глия тоже может это делать, но по-другому , , и мы на нее сегодня обращать внимания не будем.

Электрическая активность нейронов заключается в перекачивании между клеткой и окружающей средой ионов натрия, калия и хлора. Между нейронами сигналы передаются с помощью химических медиаторов. Когда медиатор, выделяемый одним нейроном, попадает на подходящий рецептор другого нейрона, он может открыть химически активируемые ионные каналы, и впустить в клетку небольшое количество ионов. В результате клетка немного меняет свой заряд. Если в клетку вошло достаточно много ионов (например, сигнал пришел одновременно на несколько синапсов), открываются другие ионные каналы, зависимые от напряжения (их больше), и клетка за считанные миллисекунды активируется целиком по принципу “все или ничего”, после чего возвращается в прежнее состояние. Этот процесс называется потенциалом действия.

Как ее можно зарегистрировать

Лучший способ записать активность отдельных клеток — воткнуть в кору электрод. Это может быть один провод, может быть матрица с несколькими десятками каналов, может быть штырь с несколькими сотнями, а может быть гибкая плата с несколькими тысячами (как тебе такое, илон маск ).

На животных это делают уже давно. Иногда по жизненным показаниям (эпилепсия, болезнь Паркинсона, полный паралич) делают на человеке. Пациенты с имплантами способны печатать текст силой мысли, управлять экзоскелетами, и даже контролировать все степени свободы промышленного манипулятора.

Выглядит впечатляюще, но в ближайшее время в каждую районную поликлинику, и, тем более, к здоровым людям, такие методы не придут. Во-первых, это очень дорого — стоимость процедуры для каждого пациента измеряется сотнями тысяч долларов. Во-вторых, имплантация электродов в кору — все-таки серьезная нейрохирургическая операция со всеми возможными осложнениями и поражением нервной ткани вокруг импланта. В-третьих, сама технология несовершенна — непонятно, что делать с тканевой совместимостью имплантов, и как предотвратить их обрастание глией, в результате чего нужный сигнал со временем перестает регистрироваться. Кроме того, обучение каждого пациента использованию импланта может занимать больше года ежедневных тренировок.

Можно не втыкать провода глубоко в кору, а аккуратно положить на нее — получится электрокортикограмма. Тут сигнал отдельных нейронов уже не зарегистрировать, но можно увидеть активность очень маленьких областей (общее правило — чем дальше от нейронов, тем хуже пространственное разрешение метода). Уровень инвазивности ниже, но все равно нужно вскрывать череп, поэтому этот метод используется в основном для контроля во время операций.

Можно положить провода даже не на кору, а на твердую мозговую оболочку (тонкий череп, который находится между мозгом и настоящим черепом). Тут уровень инвазивности и возможных осложнений еще ниже, но сигнал все еще довольно качественный. Получится эпидуральная ЭЭГ. Всем хорош метод, однако, тут все равно нужна операция.

Наконец, минимально инвазивный метод исследования электрической активности мозга — электроэнцефалограмма, а именно, запись с помощью электродов, которые находятся на поверхности головы. Метод самый массовый, сравнительно дешевый (топовые приборы стоят не дороже нескольких десятков тысяч долларов, а большинство в разы дешевле, расходники практически бесплатны), и имеет самое высокое временное разрешение из неинвазивных методов — можно изучать процессы восприятия, которые занимают считанные миллисекунды. Недостатки — низкое пространственное разрешение и шумный сигнал, который, однако, содержит достаточное количество информации для некоторых медицинских и нейроинтерфейсных целей.

На картинке с потенциалом действия видно, что у кривой есть две основных части — собственно, потенциал действия (большой пик) и синаптический потенциал (маленькое изменение амплитуды перед большим пиком). Логично было бы предположить, что то, что мы регистрируем на поверхности головы, является суммой потенциалов действия отдельных нейронов. Однако, на деле все работает наоборот — потенциал действия занимает около 1 миллисекунды и, несмотря на высокую амплитуду, через череп и мягкие ткани не проходит, а вот синаптические потенциалы за счет большей длительности, хорошо суммируются и регистрируются на поверхности черепа. Это было доказано с помощью одновременной записи инвазивными и неинвазивными методами. Также важно, что активность не каждого нейрона может быть зарегистрирована с помощью ЭЭГ (подробнее ).

Важно, что в мозге находится около 86 миллиардов нервных клеток (о том, как это можно с такой точностью посчитать, читайте ), и активность одного нейрона в таком шуме считать невозможно. Однако, какую-то информацию все равно вытащить можно. Представьте себе, что вы стоите в центре футбольного стадиона. Пока фанаты просто шумят и разговаривают между собой, вы слышите равномерный гул, но как только даже небольшая часть присутствующих начинает скандировать кричалку, ее уже можно довольно отчетливо расслышать. Точно так же и с нейронами — на поверхности черепа можно увидеть осмысленный сигнал, только если сразу большое количество нейронов проявляют синхронную активность. Для неинвазивной ЭЭГ это примерно 50 тысяч синхронно работающих нейронов.

Впервые идея померить напряжение на голове человека была реализована в 1924 году довольно интересной личностью. Первая запись ЭЭГ выглядела вот так:

Сложно понять, что означает этот сигнал, но сразу видно, что он не похож на белый шум — в нем заметны веретена колебаний высокой амплитуды и отличающейся частоты. Это альфа-ритм — самый заметный ритм мозга, который можно увидеть невооруженным взглядом.

Сейчас, конечно, ритмы ЭЭГ анализируются не на глаз, а математическими методами, самые простые из которых — спектральные.

Разбитый на полосы спектр Фурье электроэнцефалограммы (источник)

Всего есть несколько полос, в которых обычно анализируют ритмическую активность ЭЭГ, вот самые популярные:

8-14 Гц — Альфа-ритм. Представлен в основном в затылочных зонах. Сильно увеличивается при закрытии глаз, также подавляется при умственном напряжении и увеличивается при расслаблении. Этот ритм производится, когда возбуждение циркулирует между корой и таламусом. Таламус — своего рода маршрутизатор, который решает, как перенаправлять в кору потоки входящей информации. Когда человек закрывает глаза, ему становится нечего делать, он начинает генерировать фоновую активность, которая и вызывает альфа-ритм в коре. Кроме того, важную роль играет default mode network — сеть структур, которые активны во время спокойного бодрствования, но это уже тема для отдельной статьи.

Разновидность альфа-ритма, с которой его легко перепутать — мю-ритм. Он имеет схожие характеристики, но регистрируется в центральных областях головы, где находится моторная кора. Важная особенность — его мощность уменьшается, когда человек двигает конечностями, или даже думает о том, чтобы это сделать.

14-30 Гц — Бета-ритм. Больше выражен в лобных долях мозга. Увеличивается при умственном напряжении.

30+ Гц — Гамма-ритм. Может быть, где-то внутри мозга он и есть, но большая часть того, что можно записать с поверхности, происходит от мышц. Выяснили это следующим образом:

Нужно каким-то образом убрать мышечную активность с головы, чтобы записать ЭЭГ с мышцами и без. К сожалению, нет простого способа отключить мышцы на голове, не отключив их во всем теле. Берем ученого (никто другой на такое бы не согласился), накачиваем его миорелаксантом, в результате чего у него отключаются все мышцы. Проблема — если отключить все мышцы, в том числе диафрагму и межреберные, то он не сможет дышать. Решение — кладем его на ИВЛ. Проблема — он еще и говорить без мышц не может. Решение — наложим ему на руку жгут, чтобы туда не попадал миорелаксант, тогда он может этой рукой подавать сигналы. Проблема — если затянуть эксперимент, то рука отвалится. Решение — прекращаем эксперимент когда ученый перестает чувствовать руку, и надеемся, что все закончится хорошо. Результат — доля в спектре частот ЭЭГ больше 20 Гц на фоне миорелаксанта становится меньше в 10-200 раз, чем выше частота, тем выше падение.

1-4 Гц — Дельта-ритм. Выражен во время фазы, внезапно, дельта-сна (самый глубокий сон), также повышается при стрессе.

Кроме ритмической активности, в ЭЭГ есть еще вызванная. Если мы точно знаем, в какой момент мы показываем человеку стимул (это может быть картинка, звук, тактильное ощущение и даже запах), мы можем посмотреть, какая была реакция именно на этот стимул. Соотношение сигнал-шум такого ответа по отношению к фоновой ЭЭГ довольно низкое, но если мы покажем стимул, к примеру, 10 раз, нарежем ЭЭГ относительно момента предъявления и усредним, то можно получить довольно подробные кривые, которые называют вызванными потенциалами (не путать с потенциалами действия).

Это вызванный потенциал на звук. Подробности оставим психофизиологам — тут нам достаточно понимать, что каждый экстремум что-то да означает. При достаточном усреднении будут видны ответы структур начиная от слухового нерва (I) и заканчивая ассоциативной корой (P2).

Что с ней можно сделать

Сделать можно много чего, но сегодня мы сконцентрируемся на нейрокомпьютерных интерфейсах. Это системы анализа ЭЭГ в реальном времени, которые позволяют отдавать компьютеру или роботу команды без помощи мышц — самое близкое к телекинезу, что может предоставить современная наука.

Самое очевидное, что приходит в голову — сделать интерфейс на ритмической активности. Мы же помним, что альфа-ритма мало, когда человек напряжен, и много, когда он расслаблен? Вот и расслабляйтесь. Пишем ЭЭГ, делаем преобразование Фурье, когда мощность в окне вокруг 10 герц стала выше определенного порога, зажигаем лампочку — вот и контроль компьютера силой мысли. Тот же принцип может позволить управлять другими ритмами. За счет простоты и нетребовательности к оборудованию появилось достаточно много игрушек, работающих на этом принципе — Neurosky, Emotiv, тысячи их. В принципе, если хорошо постараться, человек может научиться приходить в нужное состояние, которое будет правильно классифицироваться. Проблема потребительских девайсов в том, что они часто пишут не очень качественный сигнал, и поголовно не умеют вычитать артефакты от движения глаз и мимических мышц. В результате появляется реальная возможность научиться управлять мышцами и глазами, а не мозгом (а подсознание работает так, что чем больше стараться этого не делать, тем хуже будет получаться). Кроме того, само соотношение сигнал-шум в ритмах довольно низкое, и интерфейс работает медленно и неточно (если получится правильно угадать состояние с точностью больше 70% — это уже достижение). Да и научная база по состояниям кроме расслабления и концентрации, мягко говоря, зыбкая. Тем не менее, при правильной реализации метод может иметь свое применение.

Важный подвид интерфейсов на ритмах — представление движений. Тут человеку предлагается не воображать что-то абстрактно расслабляющее, а представлять движение, скажем, правой руки. Если делать это правильно (а научиться правильному представлению сложно), можно выявить снижение мю-ритма в левом полушарии. Точность таких интерфейсов тоже крутится вокруг 70%, но они находят свое применение в тренажерах для восстановления после инсультов и травм, в том числе при помощи различных экзоскелетов, поэтому они все равно нужны.

Другой класс ЭЭГ-нейроинтерфейсов основывается на использовании вызванной активности всех сортов. Эти интерфейсы отличаются очень высокой надежностью, при удачном стечении обстоятельств приближающейся к 100%.

Самый популярный вид нейроинтерфейсов включает в себя потенциал Р300. Он возникает тогда, когда человек пытается выделить один нужный ему стимул среди многих ненужных.

К примеру, если вот тут пытаться посчитать, сколько раз загорится буква “А”, и при этом не обращать внимания на все остальные, то в ответ на этот стимул при усреднении мы увидим красную линию, а при усреднении всех остальных — синюю. Разница между ними заметна невооруженным взглядом, и обучить классификатор, который будет их различать, не составляет особого труда.

Такие интерфейсы обычно не очень красивые, и не очень быстрые (печать одной буквы займет около 10 секунд), но могут быть полезны полностью парализованным пациентам.

Кроме того, в ИМК-Р300 есть когнитивный компонент — мало просто смотреть на букву, надо активно обращать на нее внимание. Это позволяет, при выполнении определенных условий, делать на этой технологии довольно интересные игры (но это тема для другой статьи).

За счет того, что Р300 это когнитивный потенциал, для него не очень важно, что, собственно, показывают человеку, главное, чтобы он мог на это реагировать. В результате интерфейс будет работать, даже если буквы будут сменять друг друга в одной точке — это полезно для пациентов, которые не могут двигать глазами.

Есть и другие интересные вызванные потенциалы, в частности SSVEP (ЗВПУС) — потенциалы стабильного состояния. Если искать аналогии в области связи, то Р300 работает как рация — сигналы от разных стимулов разделяются по времени, а SSVEP это классический FDMA — разделение по несущей частоте, как в GSM-связи.

осторожно, эпилептические мигалки

Нужно показать человеку несколько стимулов, которые мигают с разными частотами. При выборе стимула, на него достаточно внимательно посмотреть, и через несколько секунд его частота магическим образом окажется в зрительной коре, откуда ее можно вытащить корреляционными или спектральными методами. Это быстрее и проще, чем считать буквы для Р300, но долго смотреть на такое мигание тяжело.

Там, где есть FDMA, там самое место CDMA:

осторожно, еще более эпилептические мигалки

Серое — бинарная последовательнсть, цветное — вызванная ей активность во всех каналах, карта — распределение выраженности потенциала в ЭЭГ. Видно, что максимум на затылке — в зрительных областях

Можно модулировать мигание стимулов не частотами и фазами, а ортогогнальными бинарными последовательностями, которые точно так же окажутся в зрительной коре и отклассифицируются с помощью корреляционного анализа. Это может помочь немного оптимизировать обучение классификатора и ускорить работу интерфейса — на одну букву может уходить меньше 2 секунд. За счет удачного выбора цветов можно сделать интерфейс чуть менее вырвиглазным, хотя полностью от мигания избавиться не получится. К сожалению, когнитивный компонент тут не так сильно выражен — отслеживание движений глаз дает сопоставимые результаты, но технически проще, дешевле и удобнее.

Когда я говорю о том, насколько хорошо могут работать те или иные типы интерфейсов, приходится постоянно оперировать соотношением сигнал-шум. Действительно, вызванные потенциалы имеют низкую амплитуду — около 5 микровольт, при том, что фоновый альфа-ритм запросто может иметь амплитуду в 20. Такой слабый сигнал кажется довольно сложным для классификации, но на самом деле все это довольно просто, если правильно поставить эксперимент и хорошо записать ЭЭГ. Сейчас большинство академических исследований сосредоточено в области придумывания новых классификаторов, в том числе применения нейросетей, но довольно хорошего уровеня можно достигнуть уже с самыми простыми линейными классификаторами из scikit-learn. К примеру, хороший датасет с Р300 и кодом лежит .

Нейрокомпьютерные интерфейсы — развивающаяся технология, выглядит как магия, особенно для неподготовленного человека. Однако в реальности это метод, в котором много неочевидных сложностей. Секрет здесь, как и с любой технологией, заключается в том, чтобы учитывать все ограничения и находить такие сферы ее применения, в которых эти ограничения не мешают работе.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх